home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
100%
| dexvert
| Texinfo Document (document/texInfo)
| magic
| Supported |
1%
| dexvert
| Digital Elevation Map (poly/digitalElevationMap)
| ext
| Unsupported |
1%
| dexvert
| Build Engine Demo Data (other/buildEngineDemoData)
| ext
| Unsupported |
1%
| dexvert
| IFF Geometry Data (other/iFFGeometryData)
| ext
| Unsupported |
1%
| dexvert
| Lexi-Cross Puzzle (other/lexiCrossPuzzle)
| ext
| Unsupported |
1%
| dexvert
| Half-Life Demo (other/halfLifeDemo)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| TeX document text
| default
| |
99%
| file
| LaTeX document text
| default
| |
98%
| file
| LaTeX auxiliary file, ASCII text, with CRLF line terminators
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| detectItEasy
| Format: plain text[CRLF]
| default (weak)
| |
100%
| xdgMime
| text/x-matlab
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 25 20 54 68 69 73 20 69 | 73 20 4c 45 43 4d 4f 4e |% This i|s LECMON|
|00000010| 4f 32 2e 44 45 4d 20 74 | 68 65 20 64 65 6d 6f 6e |O2.DEM t|he demon|
|00000020| 73 74 72 61 74 69 6f 6e | 20 66 69 6c 65 20 23 32 |stration| file #2|
|00000030| 0d 0a 25 20 6f 66 20 74 | 68 65 20 70 6c 61 69 6e |..% of t|he plain|
|00000040| 20 54 65 58 20 6d 61 63 | 72 6f 20 70 61 63 6b 61 | TeX mac|ro packa|
|00000050| 67 65 0d 0a 25 20 66 6f | 72 20 4c 65 63 74 75 72 |ge..% fo|r Lectur|
|00000060| 65 20 4e 6f 74 65 73 20 | 69 6e 20 50 68 79 73 69 |e Notes |in Physi|
|00000070| 63 73 20 28 4d 6f 6e 6f | 67 72 61 70 68 73 29 0d |cs (Mono|graphs).|
|00000080| 0a 25 20 66 72 6f 6d 20 | 53 70 72 69 6e 67 65 72 |.% from |Springer|
|00000090| 2d 56 65 72 6c 61 67 20 | 48 65 69 64 65 6c 62 65 |-Verlag |Heidelbe|
|000000a0| 72 67 0d 0a 25 20 56 65 | 72 73 69 6f 6e 20 32 2e |rg..% Ve|rsion 2.|
|000000b0| 31 0d 0a 25 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |1..%----|--------|
|000000c0| 2d 2d 6e 75 72 20 76 65 | 72 62 61 74 69 6d 20 6d |--nur ve|rbatim m|
|000000d0| 61 63 72 6f 20 6d 79 20 | 6f 77 6e 20 6d 61 63 72 |acro my |own macr|
|000000e0| 6f 73 20 2d 2d 2d 2d 20 | 64 6f 20 6e 6f 74 20 63 |os ---- |do not c|
|000000f0| 61 72 65 20 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 0d |are ----|-------.|
|00000100| 0a 5c 63 68 61 72 64 65 | 66 5c 6f 74 68 65 72 3d |.\charde|f\other=|
|00000110| 31 32 0d 0a 7b 5c 6f 62 | 65 79 73 70 61 63 65 73 |12..{\ob|eyspaces|
|00000120| 5c 67 64 65 66 20 7b 5c | 20 7d 7d 0d 0a 7b 5c 63 |\gdef {\| }}..{\c|
|00000130| 61 74 63 6f 64 65 60 5c | 60 3d 5c 61 63 74 69 76 |atcode`\|`=\activ|
|00000140| 65 20 5c 67 64 65 66 60 | 7b 5c 72 65 6c 61 78 5c |e \gdef`|{\relax\|
|00000150| 6c 71 7d 7d 0d 0a 5c 64 | 65 66 5c 73 65 74 75 70 |lq}}..\d|ef\setup|
|00000160| 76 65 72 62 61 74 69 6d | 7b 5c 62 65 67 69 6e 67 |verbatim|{\beging|
|00000170| 72 6f 75 70 5c 63 61 74 | 63 6f 64 65 60 5c 5c 3d |roup\cat|code`\\=|
|00000180| 5c 6f 74 68 65 72 20 5c | 63 61 74 63 6f 64 65 60 |\other \|catcode`|
|00000190| 5c 7b 3d 5c 6f 74 68 65 | 72 0d 0a 20 20 5c 63 61 |\{=\othe|r.. \ca|
|000001a0| 74 63 6f 64 65 60 5c 7d | 3d 5c 6f 74 68 65 72 20 |tcode`\}|=\other |
|000001b0| 5c 63 61 74 63 6f 64 65 | 60 5c 24 3d 5c 6f 74 68 |\catcode|`\$=\oth|
|000001c0| 65 72 20 5c 63 61 74 63 | 6f 64 65 60 5c 26 3d 5c |er \catc|ode`\&=\|
|000001d0| 6f 74 68 65 72 0d 0a 20 | 20 5c 63 61 74 63 6f 64 |other.. | \catcod|
|000001e0| 65 60 5c 23 3d 5c 6f 74 | 68 65 72 20 5c 63 61 74 |e`\#=\ot|her \cat|
|000001f0| 63 6f 64 65 60 5c 25 3d | 5c 6f 74 68 65 72 20 5c |code`\%=|\other \|
|00000200| 63 61 74 63 6f 64 65 60 | 5c 7e 3d 5c 6f 74 68 65 |catcode`|\~=\othe|
|00000210| 72 0d 0a 20 20 5c 63 61 | 74 63 6f 64 65 60 5c 5f |r.. \ca|tcode`\_|
|00000220| 3d 5c 6f 74 68 65 72 20 | 5c 63 61 74 63 6f 64 65 |=\other |\catcode|
|00000230| 60 5c 5e 3d 5c 6f 74 68 | 65 72 0d 0a 20 20 5c 6f |`\^=\oth|er.. \o|
|00000240| 62 65 79 73 70 61 63 65 | 73 20 5c 74 74 7d 0d 0a |beyspace|s \tt}..|
|00000250| 5c 64 65 66 5c 64 6f 76 | 65 72 62 61 74 69 6d 23 |\def\dov|erbatim#|
|00000260| 31 7b 5c 64 65 66 5c 6e | 65 78 74 23 23 31 23 31 |1{\def\n|ext##1#1|
|00000270| 7b 23 23 31 5c 65 6e 64 | 67 72 6f 75 70 7d 5c 6e |{##1\end|group}\n|
|00000280| 65 78 74 7d 0d 0a 5c 64 | 65 66 5c 76 65 72 62 7b |ext}..\d|ef\verb{|
|00000290| 5c 73 65 74 75 70 76 65 | 72 62 61 74 69 6d 5c 64 |\setupve|rbatim\d|
|000002a0| 6f 76 65 72 62 61 74 69 | 6d 7d 0d 0a 7b 5c 63 61 |overbati|m}..{\ca|
|000002b0| 74 63 6f 64 65 60 5c 7c | 3d 30 20 7c 63 61 74 63 |tcode`\||=0 |catc|
|000002c0| 6f 64 65 60 7c 5c 3d 5c | 6f 74 68 65 72 0d 0a 20 |ode`|\=\|other.. |
|000002d0| 20 20 7c 6f 62 65 79 6c | 69 6e 65 73 0d 0a 20 20 | |obeyl|ines.. |
|000002e0| 20 7c 67 64 65 66 7c 74 | 74 66 69 6e 69 73 68 23 | |gdef|t|tfinish#|
|000002f0| 31 5c 65 6e 64 74 74 7b | 7c 76 62 6f 78 7b 23 31 |1\endtt{||vbox{#1|
|00000300| 7c 73 74 72 75 74 7d 7c | 65 6e 64 67 72 6f 75 70 ||strut}||endgroup|
|00000310| 7c 73 6d 61 6c 6c 73 6b | 69 70 7d 7d 0d 0a 5c 64 ||smallsk|ip}}..\d|
|00000320| 65 66 5c 62 65 67 69 6e | 74 74 7b 5c 73 74 72 75 |ef\begin|tt{\stru|
|00000330| 74 5c 73 6d 61 6c 6c 73 | 6b 69 70 5c 6c 65 74 5c |t\smalls|kip\let\|
|00000340| 70 61 72 3d 5c 65 6e 64 | 67 72 61 66 0d 0a 20 5c |par=\end|graf.. \|
|00000350| 73 65 74 75 70 76 65 72 | 62 61 74 69 6d 20 5c 70 |setupver|batim \p|
|00000360| 61 72 69 6e 64 65 6e 74 | 3d 30 70 74 5c 6f 62 65 |arindent|=0pt\obe|
|00000370| 79 6c 69 6e 65 73 0d 0a | 5c 70 61 72 73 6b 69 70 |ylines..|\parskip|
|00000380| 3d 30 70 74 5c 63 61 74 | 63 6f 64 65 60 5c 7c 3d |=0pt\cat|code`\|=|
|00000390| 30 20 5c 74 74 66 69 6e | 69 73 68 7d 0d 0a 5c 64 |0 \ttfin|ish}..\d|
|000003a0| 65 66 5c 6c 69 73 74 69 | 6e 67 23 31 7b 5c 70 61 |ef\listi|ng#1{\pa|
|000003b0| 72 5c 73 65 74 75 70 76 | 65 72 62 61 74 69 6d 5c |r\setupv|erbatim\|
|000003c0| 6f 62 65 79 6c 69 6e 65 | 73 5c 69 6e 70 75 74 23 |obeyline|s\input#|
|000003d0| 31 20 5c 65 6e 64 67 72 | 6f 75 70 7d 0d 0a 25 2d |1 \endgr|oup}..%-|
|000003e0| 2d 2d 2d 2d 2d 2d 20 65 | 6e 64 20 76 65 72 62 61 |------ e|nd verba|
|000003f0| 74 69 6d 20 6d 61 63 72 | 6f 20 2d 2d 2d 2d 2d 2d |tim macr|o ------|
|00000400| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000410| 2d 2d 2d 2d 2d 2d 2d 2d | 0d 0a 5c 69 6e 70 75 74 |--------|..\input|
|00000420| 20 6c 65 63 6d 6f 6e 6f | 2e 63 6d 6d 0d 0a 5c 70 | lecmono|.cmm..\p|
|00000430| 61 67 65 6e 6f 3d 37 0d | 0a 25 25 25 20 2d 2d 2d |ageno=7.|.%%% ---|
|00000440| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 20 65 |--------|------ e|
|00000450| 78 74 72 61 20 6c 69 6e | 65 20 66 6f 72 20 65 78 |xtra lin|e for ex|
|00000460| 70 6c 61 6e 61 74 69 6f | 6e 20 2d 2d 2d 2d 2d 2d |planatio|n ------|
|00000470| 2d 2d 2d 2d 2d 2d 2d 2d | 0d 0a 5c 74 6f 70 69 6e |--------|..\topin|
|00000480| 73 65 72 74 5c 76 62 6f | 78 7b 5c 63 65 6e 74 65 |sert\vbo|x{\cente|
|00000490| 72 6c 69 6e 65 7b 5c 76 | 62 6f 78 7b 5c 68 72 75 |rline{\v|box{\hru|
|000004a0| 6c 65 5c 73 6d 61 6c 6c | 73 6b 69 70 5c 68 62 6f |le\small|skip\hbo|
|000004b0| 78 7b 5c 71 75 61 64 0d | 0a 45 78 61 6d 70 6c 65 |x{\quad.|.Example|
|000004c0| 20 66 6f 72 20 6c 61 79 | 6f 75 74 20 6f 6e 6c 79 | for lay|out only|
|000004d0| 3a 20 20 74 65 78 74 20 | 69 73 0d 0a 6e 6f 74 20 |: text |is..not |
|000004e0| 69 6e 74 65 6e 64 65 64 | 20 74 6f 20 6d 61 6b 65 |intended| to make|
|000004f0| 20 73 63 69 65 6e 74 69 | 66 69 63 20 73 65 6e 73 | scienti|fic sens|
|00000500| 65 2e 5c 71 75 61 64 7d | 5c 73 6d 61 6c 6c 73 6b |e.\quad}|\smallsk|
|00000510| 69 70 5c 68 72 75 6c 65 | 7d 7d 7d 5c 65 6e 64 69 |ip\hrule|}}}\endi|
|00000520| 6e 73 65 72 74 0d 0a 25 | 25 25 20 2d 2d 2d 2d 2d |nsert..%|%% -----|
|00000530| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 20 65 6e 64 |--------|---- end|
|00000540| 20 6f 66 20 65 78 74 72 | 61 20 6c 69 6e 65 20 2d | of extr|a line -|
|00000550| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000560| 2d 2d 2d 2d 2d 0d 0a 5c | 74 69 74 6c 65 61 7b 31 |-----..\|titlea{1|
|00000570| 2e 7d 7b 47 72 61 6e 64 | 20 55 6e 69 66 69 63 61 |.}{Grand| Unifica|
|00000580| 74 69 6f 6e 20 53 63 68 | 65 6d 65 73 3a 5c 6e 65 |tion Sch|emes:\ne|
|00000590| 77 6c 69 6e 65 0d 0a 41 | 20 53 68 6f 72 74 20 49 |wline..A| Short I|
|000005a0| 6e 74 72 6f 64 75 63 74 | 69 6f 6e 7d 0d 0a 5c 74 |ntroduct|ion}..\t|
|000005b0| 69 74 6c 65 61 72 75 6e | 6e 69 6e 67 7b 47 72 61 |itlearun|ning{Gra|
|000005c0| 6e 64 20 55 6e 69 66 69 | 63 61 74 69 6f 6e 20 53 |nd Unifi|cation S|
|000005d0| 63 68 65 6d 65 73 7d 0d | 0a 5c 6d 6f 74 74 6f 7b |chemes}.|.\motto{|
|000005e0| 60 60 54 6f 20 74 68 65 | 20 69 6e 76 65 6e 74 6f |``To the| invento|
|000005f0| 72 20 74 68 65 20 70 72 | 6f 64 75 63 74 73 20 6f |r the pr|oducts o|
|00000600| 66 20 68 69 73 20 69 6d | 61 67 69 6e 61 74 69 6f |f his im|aginatio|
|00000610| 6e 20 61 70 70 65 61 72 | 0d 0a 6e 65 63 65 73 73 |n appear|..necess|
|00000620| 61 72 79 20 61 6e 64 20 | 6e 61 74 75 72 61 6c 2c |ary and |natural,|
|00000630| 20 73 75 63 68 20 74 68 | 61 74 20 68 65 20 64 6f | such th|at he do|
|00000640| 65 73 20 6e 6f 74 20 6c | 6f 6f 6b 20 61 74 20 74 |es not l|ook at t|
|00000650| 68 65 6d 20 61 73 20 6f | 62 6a 65 63 74 73 20 6f |hem as o|bjects o|
|00000660| 66 0d 0a 74 68 65 20 6d | 69 6e 64 2c 20 62 75 74 |f..the m|ind, but|
|00000670| 20 72 61 74 68 65 72 20 | 61 73 20 74 68 69 6e 67 | rather |as thing|
|00000680| 73 20 62 65 6c 6f 6e 67 | 69 6e 67 20 74 6f 20 72 |s belong|ing to r|
|00000690| 65 61 6c 69 74 79 2c 20 | 61 6e 64 20 74 68 75 73 |eality, |and thus|
|000006a0| 20 68 65 20 77 69 73 68 | 65 73 0d 0a 74 68 65 6d | he wish|es..them|
|000006b0| 20 74 6f 20 62 65 20 73 | 65 65 6e 20 6c 69 6b 65 | to be s|een like|
|000006c0| 20 74 68 61 74 2e 27 27 | 7d 7b 41 2e 20 45 69 6e | that.''|}{A. Ein|
|000006d0| 73 74 65 69 6e 5c 66 6f | 6e 6f 74 65 7b 60 60 57 |stein\fo|note{``W|
|000006e0| 65 72 20 64 61 20 6e 5c | 22 61 6d 6c 69 63 68 0d |er da n\|"amlich.|
|000006f0| 0a 65 72 66 69 6e 64 65 | 74 2c 20 64 65 6d 20 65 |.erfinde|t, dem e|
|00000700| 72 73 63 68 65 69 6e 65 | 6e 20 64 69 65 20 45 72 |rscheine|n die Er|
|00000710| 7a 65 75 67 6e 69 73 73 | 65 20 73 65 69 6e 65 72 |zeugniss|e seiner|
|00000720| 20 50 68 61 6e 74 61 73 | 69 65 20 73 6f 20 6e 6f | Phantas|ie so no|
|00000730| 74 77 65 6e 64 69 67 0d | 0a 75 6e 64 20 6e 61 74 |twendig.|.und nat|
|00000740| 75 72 67 65 67 65 62 65 | 6e 2c 20 64 61 5c 73 73 |urgegebe|n, da\ss|
|00000750| 7b 7d 20 65 72 20 73 69 | 65 20 6e 69 63 68 74 20 |{} er si|e nicht |
|00000760| 66 5c 22 75 72 20 47 65 | 62 69 6c 64 65 20 64 65 |f\"ur Ge|bilde de|
|00000770| 73 20 44 65 6e 6b 65 6e | 73 2c 0d 0a 73 6f 6e 64 |s Denken|s,..sond|
|00000780| 65 72 6e 20 66 5c 22 75 | 72 20 67 65 67 65 62 65 |ern f\"u|r gegebe|
|00000790| 6e 65 0d 0a 52 65 61 6c | 69 74 5c 22 61 74 65 6e |ne..Real|it\"aten|
|000007a0| 20 61 6e 73 69 65 68 74 | 20 75 6e 64 20 61 6e 67 | ansieht| und ang|
|000007b0| 65 73 65 68 65 6e 20 77 | 69 73 73 65 6e 20 6d 5c |esehen w|issen m\|
|000007c0| 22 6f 63 68 74 65 2e 27 | 27 7d 20 20 20 20 7d 0d |"ochte.'|'} }.|
|000007d0| 0a 5c 6d 6f 74 74 6f 7b | 60 60 49 20 68 61 74 65 |.\motto{|``I hate|
|000007e0| 20 72 65 61 6c 69 74 79 | 2c 20 62 75 74 20 69 74 | reality|, but it|
|000007f0| 20 69 73 20 73 74 69 6c | 6c 20 74 68 65 20 6f 6e | is stil|l the on|
|00000800| 6c 79 20 70 6c 61 63 65 | 20 77 68 65 72 65 20 49 |ly place| where I|
|00000810| 20 63 61 6e 20 67 65 74 | 0d 0a 61 20 64 65 63 65 | can get|..a dece|
|00000820| 6e 74 20 73 74 65 61 6b | 27 27 7d 7b 57 6f 6f 64 |nt steak|''}{Wood|
|00000830| 79 20 41 6c 6c 65 6e 7d | 0d 0a 54 68 65 72 65 20 |y Allen}|..There |
|00000840| 69 73 20 6e 6f 20 65 78 | 70 65 72 69 6d 65 6e 74 |is no ex|periment|
|00000850| 61 6c 20 65 76 69 64 65 | 6e 63 65 20 73 6f 20 66 |al evide|nce so f|
|00000860| 61 72 20 74 68 61 74 20 | 63 6f 75 6c 64 20 6e 6f |ar that |could no|
|00000870| 74 20 62 65 0d 0a 61 63 | 63 6f 6d 6d 6f 64 61 74 |t be..ac|commodat|
|00000880| 65 64 20 77 69 74 68 69 | 6e 20 74 68 65 20 73 74 |ed withi|n the st|
|00000890| 61 6e 64 61 72 64 20 6d | 6f 64 65 6c 2e 20 54 68 |andard m|odel. Th|
|000008a0| 65 72 65 20 61 72 65 2c | 20 68 6f 77 65 76 65 72 |ere are,| however|
|000008b0| 2c 20 73 65 76 65 72 61 | 6c 0d 0a 74 68 65 6f 72 |, severa|l..theor|
|000008c0| 65 74 69 63 61 6c 20 73 | 68 6f 72 74 63 6f 6d 69 |etical s|hortcomi|
|000008d0| 6e 67 73 20 77 68 69 63 | 68 20 6d 75 73 74 20 62 |ngs whic|h must b|
|000008e0| 65 20 72 65 6d 65 64 69 | 65 64 20 62 79 5c 64 6f |e remedi|ed by\do|
|000008f0| 74 73 0d 0a 5c 74 69 74 | 6c 65 62 7b 31 2e 31 7d |ts..\tit|leb{1.1}|
|00000900| 7b 24 53 55 24 28 35 29 | 20 2d 2d 20 47 55 54 7d |{$SU$(5)| -- GUT}|
|00000910| 0d 0a 54 68 65 20 67 72 | 6f 75 70 20 24 53 55 24 |..The gr|oup $SU$|
|00000920| 28 35 29 20 2d 2d 20 35 | 20 24 5c 74 69 6d 65 73 |(5) -- 5| $\times|
|00000930| 24 20 35 20 75 6e 69 6d | 6f 64 75 6c 61 72 20 6d |$ 5 unim|odular m|
|00000940| 61 74 72 69 63 65 73 20 | 6f 66 20 64 65 74 65 72 |atrices |of deter|
|00000950| 6d 69 6d 61 6e 74 0d 0a | 31 20 2d 2d 20 68 61 73 |mimant..|1 -- has|
|00000960| 20 24 35 5e 32 20 2d 20 | 31 20 3d 20 32 34 24 20 | $5^2 - |1 = 24$ |
|00000970| 66 72 65 65 20 65 6e 74 | 72 69 65 73 5c 64 6f 74 |free ent|ries\dot|
|00000980| 73 0d 0a 5c 6c 65 6d 6d | 61 7b 31 2e 31 7d 7b 4c |s..\lemm|a{1.1}{L|
|00000990| 65 74 20 24 7a 5c 69 6e | 7b 5c 72 6d 20 65 78 7d |et $z\in|{\rm ex}|
|000009a0| 5f 74 28 46 29 24 20 61 | 6e 64 20 24 5c 76 61 72 |_t(F)$ a|nd $\var|
|000009b0| 65 70 73 69 6c 6f 6e 3e | 30 24 2e 20 54 68 65 6e |epsilon>|0$. Then|
|000009c0| 20 74 68 65 72 65 0d 0a | 65 78 69 73 74 73 20 61 | there..|exists a|
|000009d0| 20 73 69 6d 70 6c 65 78 | 5c 64 6f 74 73 7d 0d 0a | simplex|\dots}..|
|000009e0| 43 6f 6e 73 69 64 65 72 | 20 61 73 20 61 6e 20 65 |Consider| as an e|
|000009f0| 78 61 6d 70 6c 65 20 74 | 68 65 20 66 6f 6c 6c 6f |xample t|he follo|
|00000a00| 77 69 6e 67 20 74 68 65 | 6f 72 65 6d 20 28 41 6d |wing the|orem (Am|
|00000a10| 65 73 20 31 39 36 39 29 | 2e 0d 0a 20 5c 74 68 65 |es 1969)|... \the|
|00000a20| 6f 72 65 6d 7b 7d 7b 54 | 68 65 20 53 74 72 6f 6e |orem{}{T|he Stron|
|00000a30| 67 20 55 6e 63 6f 6e 73 | 74 72 61 69 6e 65 64 20 |g Uncons|trained |
|00000a40| 20 43 6f 6e 76 65 78 20 | 46 75 6e 63 74 69 6f 6e | Convex |Function|
|00000a50| 5c 64 6f 74 73 7d 0d 0a | 53 65 76 65 72 61 6c 20 |\dots}..|Several |
|00000a60| 73 6c 69 67 68 74 6c 79 | 20 64 69 66 66 65 72 65 |slightly| differe|
|00000a70| 6e 74 20 66 6f 72 6d 73 | 20 6f 66 20 73 75 63 68 |nt forms| of such|
|00000a80| 20 74 68 65 6f 72 65 6d | 73 20 63 61 6e 20 62 65 | theorem|s can be|
|00000a90| 20 66 6f 75 6e 64 20 69 | 6e 20 74 68 65 0d 0a 73 | found i|n the..s|
|00000aa0| 74 61 6e 64 61 72 64 20 | 74 65 78 74 62 6f 6f 6b |tandard |textbook|
|00000ab0| 73 20 28 48 61 77 6b 69 | 6e 67 20 61 6e 64 20 45 |s (Hawki|ng and E|
|00000ac0| 6c 6c 69 73 20 31 39 37 | 33 3b 20 57 61 6c 64 20 |llis 197|3; Wald |
|00000ad0| 31 39 38 34 29 2e 20 49 | 6e 20 67 65 6e 65 72 61 |1984). I|n genera|
|00000ae0| 6c 2c 0d 0a 74 68 65 20 | 74 68 65 6f 72 65 6d 73 |l,..the |theorems|
|00000af0| 20 73 68 6f 77 20 74 68 | 61 74 20 74 68 65 20 63 | show th|at the c|
|00000b00| 61 75 73 61 6c 20 43 61 | 75 63 68 79 20 64 65 76 |ausal Ca|uchy dev|
|00000b10| 65 6c 6f 70 6d 65 6e 74 | 20 6f 66 20 61 20 33 2d |elopment| of a 3-|
|00000b20| 73 75 72 66 61 63 65 20 | 69 73 0d 0a 69 6e 63 6f |surface |is..inco|
|00000b30| 6d 70 6c 65 74 65 20 69 | 66 20 5c 64 6f 74 73 0d |mplete i|f \dots.|
|00000b40| 0a 20 5c 63 6f 72 6f 6c | 6c 61 72 79 7b 31 2e 32 |. \corol|lary{1.2|
|00000b50| 7d 7b 20 46 6f 72 20 61 | 6e 79 20 66 69 78 65 64 |}{ For a|ny fixed|
|00000b60| 20 69 6e 74 65 67 65 72 | 20 24 6e 20 5c 67 65 31 | integer| $n \ge1|
|00000b70| 2c 24 20 74 68 65 72 65 | 20 65 78 69 73 74 73 5c |,$ there| exists\|
|00000b80| 64 6f 74 73 7d 0d 0a 5c | 64 65 66 69 6e 69 74 69 |dots}..\|definiti|
|00000b90| 6f 6e 7b 31 2e 33 7d 7b | 41 20 63 6f 6e 76 65 78 |on{1.3}{|A convex|
|00000ba0| 20 73 65 74 20 4b 20 69 | 73 20 63 61 6c 6c 65 64 | set K i|s called|
|00000bb0| 20 63 69 72 63 75 6d 73 | 63 72 69 62 65 64 20 69 | circums|cribed i|
|00000bc0| 66 5c 64 6f 74 73 7d 0d | 0a 5c 65 78 61 6d 70 6c |f\dots}.|.\exampl|
|00000bd0| 65 7b 31 2e 34 7d 7b 4c | 65 74 20 24 4b 5c 73 75 |e{1.4}{L|et $K\su|
|00000be0| 62 73 65 74 65 71 20 5c | 62 62 62 72 5e 6e 24 20 |bseteq \|bbbr^n$ |
|00000bf0| 62 65 20 61 20 70 6f 6c | 79 74 6f 70 65 20 64 65 |be a pol|ytope de|
|00000c00| 66 69 6e 65 64 0d 0a 61 | 73 20 74 68 65 20 63 6f |fined..a|s the co|
|00000c10| 6e 76 65 78 20 68 75 6c | 6c 20 6f 66 20 61 20 67 |nvex hul|l of a g|
|00000c20| 69 76 65 6e 20 66 69 6e | 69 74 65 20 73 65 74 5c |iven fin|ite set\|
|00000c30| 64 6f 74 73 20 7d 0d 0a | 5c 70 72 6f 6f 66 20 7b |dots }..|\proof {|
|00000c40| 53 69 6e 63 65 20 24 7b | 5c 72 6d 20 65 78 7d 5f |Since ${|\rm ex}_|
|00000c50| 74 28 46 29 5c 73 75 62 | 73 65 74 65 71 20 46 24 |t(F)\sub|seteq F$|
|00000c60| 2c 20 69 74 20 69 73 20 | 74 72 69 76 69 61 6c 20 |, it is |trivial |
|00000c70| 74 68 61 74 0d 0a 24 7b | 5c 72 6d 20 68 75 6c 6c |that..${|\rm hull|
|00000c80| 7d 5f 74 5c 62 69 67 6c | 20 28 7b 5c 72 6d 20 65 |}_t\bigl| ({\rm e|
|00000c90| 78 7d 5f 74 28 46 29 5c | 62 69 67 72 20 29 5c 73 |x}_t(F)\|bigr )\s|
|00000ca0| 75 62 73 65 74 65 71 20 | 7b 5c 72 6d 0d 0a 68 75 |ubseteq |{\rm..hu|
|00000cb0| 6c 6c 7d 5f 74 28 46 29 | 24 5c 71 65 64 7d 0d 0a |ll}_t(F)|$\qed}..|
|00000cc0| 20 20 5c 72 65 6d 61 72 | 6b 7b 31 2e 35 7d 7b 41 | \remar|k{1.5}{A|
|00000cd0| 6c 6c 20 74 68 65 20 73 | 74 72 69 63 74 20 69 6e |ll the s|trict in|
|00000ce0| 65 71 75 61 6c 69 74 69 | 65 73 20 61 70 70 65 61 |equaliti|es appea|
|00000cf0| 72 69 6e 67 20 69 6e 20 | 74 68 65 20 73 74 72 6f |ring in |the stro|
|00000d00| 6e 67 0d 0a 76 65 72 73 | 69 6f 6e 73 5c 64 6f 74 |ng..vers|ions\dot|
|00000d10| 73 7d 0d 0a 53 6f 6d 65 | 77 68 61 74 20 6c 61 72 |s}..Some|what lar|
|00000d20| 67 65 72 20 6d 61 73 73 | 65 73 20 61 72 65 20 70 |ger mass|es are p|
|00000d30| 6f 73 73 69 62 6c 65 20 | 69 6e 20 70 61 72 74 69 |ossible |in parti|
|00000d40| 63 75 6c 61 72 20 6d 6f | 64 65 6c 73 2e 20 4f 6e |cular mo|dels. On|
|00000d50| 65 20 63 61 6e 2c 20 69 | 6e 20 61 0d 0a 67 65 6e |e can, i|n a..gen|
|00000d60| 65 72 61 6c 2c 20 71 75 | 61 6c 69 74 61 74 69 76 |eral, qu|alitativ|
|00000d70| 65 20 77 61 79 2c 20 61 | 72 67 75 65 20 61 73 20 |e way, a|rgue as |
|00000d80| 66 6f 6c 6c 6f 77 73 5c | 64 6f 74 73 0d 0a 5c 62 |follows\|dots..\b|
|00000d90| 65 67 64 6f 75 62 6c 65 | 66 69 67 20 32 2e 38 20 |egdouble|fig 2.8 |
|00000da0| 63 6d 0d 0a 7b 5c 66 69 | 67 75 72 65 7b 31 2e 31 |cm..{\fi|gure{1.1|
|00000db0| 7d 7b 54 68 69 73 20 69 | 73 20 74 68 65 20 66 69 |}{This i|s the fi|
|00000dc0| 72 73 74 20 66 69 67 75 | 72 65 20 6c 65 67 65 6e |rst figu|re legen|
|00000dd0| 64 20 69 6e 20 74 68 69 | 73 20 73 65 63 74 69 6f |d in thi|s sectio|
|00000de0| 6e 2e 0d 0a 20 54 68 65 | 20 77 69 64 74 68 20 6f |n... The| width o|
|00000df0| 66 20 74 68 69 73 20 6c | 65 67 65 6e 64 0d 0a 69 |f this l|egend..i|
|00000e00| 73 20 61 62 6f 75 74 20 | 74 68 65 20 73 61 6d 65 |s about |the same|
|00000e10| 20 61 73 20 66 6f 72 20 | 74 68 65 20 73 65 63 6f | as for |the seco|
|00000e20| 6e 64 20 66 69 67 75 72 | 65 7d 7d 0d 0a 7b 5c 66 |nd figur|e}}..{\f|
|00000e30| 69 67 75 72 65 7b 31 2e | 32 7d 7b 54 68 69 73 20 |igure{1.|2}{This |
|00000e40| 69 73 20 61 6e 6f 74 68 | 65 72 20 66 69 67 75 72 |is anoth|er figur|
|00000e50| 65 7d 7d 0d 0a 5c 65 6e | 64 64 6f 75 62 6c 65 66 |e}}..\en|ddoublef|
|00000e60| 69 67 0d 0a 7b 5c 69 74 | 20 5b 54 68 65 20 73 70 |ig..{\it| [The sp|
|00000e70| 61 63 65 20 66 6f 72 20 | 74 68 65 20 66 69 67 75 |ace for |the figu|
|00000e80| 72 65 20 61 6e 64 20 69 | 74 73 20 6c 65 67 65 6e |re and i|ts legen|
|00000e90| 64 20 6d 61 79 20 61 70 | 70 65 61 72 20 77 68 65 |d may ap|pear whe|
|00000ea0| 72 65 20 69 74 20 69 73 | 0d 0a 6e 65 63 65 73 73 |re it is|..necess|
|00000eb0| 61 72 79 20 66 6f 72 20 | 74 68 65 20 70 61 67 65 |ary for |the page|
|00000ec0| 20 6c 61 79 6f 75 74 20 | 61 6e 64 20 6e 6f 74 20 | layout |and not |
|00000ed0| 77 68 65 72 65 20 69 74 | 20 69 73 20 63 6f 64 65 |where it| is code|
|00000ee0| 64 20 69 6e 20 74 68 65 | 20 69 6e 70 75 74 0d 0a |d in the| input..|
|00000ef0| 66 69 6c 65 2e 5d 7d 0d | 0a 0d 0a 54 68 65 73 65 |file.]}.|...These|
|00000f00| 20 77 65 72 65 20 74 61 | 6b 65 6e 20 64 75 72 69 | were ta|ken duri|
|00000f10| 6e 67 20 41 75 67 75 73 | 74 20 31 39 35 39 20 2d |ng Augus|t 1959 -|
|00000f20| 2d 20 44 65 63 65 6d 62 | 65 72 20 31 39 37 36 0d |- Decemb|er 1976.|
|00000f30| 0a 61 6e 64 20 61 74 20 | 74 68 65 20 4e 61 74 69 |.and at |the Nati|
|00000f40| 6f 6e 61 6c 20 53 6f 6c | 61 72 20 4f 62 73 65 72 |onal Sol|ar Obser|
|00000f50| 76 61 74 6f 72 79 0d 0a | 28 4b 69 74 74 20 50 65 |vatory..|(Kitt Pe|
|00000f60| 61 6b 29 20 64 75 72 69 | 6e 67 20 44 65 63 65 6d |ak) duri|ng Decem|
|00000f70| 62 65 72 20 31 39 37 36 | 20 2d 2d 20 4a 75 6c 79 |ber 1976| -- July|
|00000f80| 20 31 39 38 34 2e 20 41 | 73 20 74 68 65 20 73 75 | 1984. A|s the su|
|00000f90| 6e 20 72 6f 74 61 74 65 | 73 2c 20 74 68 65 0d 0a |n rotate|s, the..|
|00000fa0| 6c 6f 6e 67 69 74 75 64 | 65 20 6f 66 20 74 68 65 |longitud|e of the|
|00000fb0| 20 63 65 6e 74 72 61 6c | 20 6d 65 72 69 64 69 61 | central| meridia|
|00000fc0| 6e 20 64 65 63 72 65 61 | 73 65 73 2e 0d 0a 5c 62 |n decrea|ses...\b|
|00000fd0| 65 67 66 69 67 20 35 20 | 63 6d 0d 0a 5c 66 69 67 |egfig 5 |cm..\fig|
|00000fe0| 75 72 65 7b 31 2e 33 7d | 7b 54 68 69 73 20 69 73 |ure{1.3}|{This is|
|00000ff0| 20 74 68 65 20 6c 65 67 | 65 6e 64 20 6f 66 20 61 | the leg|end of a|
|00001000| 20 66 69 67 75 72 65 2e | 20 54 68 65 20 73 70 61 | figure.| The spa|
|00001010| 63 65 20 66 6f 72 20 74 | 68 65 20 66 69 67 75 72 |ce for t|he figur|
|00001020| 65 20 69 73 0d 0a 35 20 | 63 6d 7d 0d 0a 5c 65 6e |e is..5 |cm}..\en|
|00001030| 64 66 69 67 0d 0a 20 46 | 72 6f 6d 20 65 61 63 68 |dfig.. F|rom each|
|00001040| 20 64 61 69 6c 79 20 6d | 61 67 6e 65 74 6f 67 72 | daily m|agnetogr|
|00001050| 61 6d 2c 0d 0a 74 68 65 | 20 6d 61 67 6e 65 74 69 |am,..the| magneti|
|00001060| 63 20 66 69 65 6c 64 73 | 20 61 72 6f 75 6e 64 20 |c fields| around |
|00001070| 74 68 65 20 63 65 6e 74 | 72 61 6c 20 6d 65 72 69 |the cent|ral meri|
|00001080| 64 69 61 6e 20 68 61 76 | 65 20 62 65 65 6e 20 75 |dian hav|e been u|
|00001090| 73 65 64 20 74 6f 20 63 | 6f 76 65 72 0d 0a 61 6c |sed to c|over..al|
|000010a0| 6c 20 6c 61 74 69 74 75 | 64 65 73 20 77 69 74 68 |l latitu|des with|
|000010b0| 69 6e 20 74 68 69 73 20 | 70 61 72 74 69 63 75 6c |in this |particul|
|000010c0| 61 72 20 6c 6f 6e 67 69 | 74 75 64 65 20 62 61 6e |ar longi|tude ban|
|000010d0| 64 2e 20 44 75 72 69 6e | 67 20 74 68 65 20 63 6f |d. Durin|g the co|
|000010e0| 75 72 73 65 0d 0a 6f 66 | 20 6f 6e 65 20 73 6f 6c |urse..of| one sol|
|000010f0| 61 72 20 72 6f 74 61 74 | 69 6f 6e 2c 20 61 6c 6c |ar rotat|ion, all|
|00001100| 20 6c 6f 6e 67 69 74 75 | 64 65 73 20 67 65 74 20 | longitu|des get |
|00001110| 63 6f 76 65 72 65 64 2c | 20 72 65 73 75 6c 74 69 |covered,| resulti|
|00001120| 6e 67 20 69 6e 20 61 20 | 73 79 6e 6f 70 74 69 63 |ng in a |synoptic|
|00001130| 0d 0a 6d 61 70 20 72 65 | 70 72 65 73 65 6e 74 69 |..map re|presenti|
|00001140| 6e 67 20 74 68 65 20 6f | 62 73 65 72 76 65 64 20 |ng the o|bserved |
|00001150| 6c 6f 6e 67 69 74 75 64 | 69 6e 61 6c 20 28 6c 69 |longitud|inal (li|
|00001160| 6e 65 2d 6f 66 2d 73 69 | 67 68 74 29 20 6d 61 67 |ne-of-si|ght) mag|
|00001170| 6e 65 74 69 63 20 66 69 | 65 6c 64 0d 0a 61 73 20 |netic fi|eld..as |
|00001180| 61 20 66 75 6e 63 74 69 | 6f 6e 20 6f 66 20 6c 61 |a functi|on of la|
|00001190| 74 69 74 75 64 65 20 61 | 6e 64 20 6c 6f 6e 67 69 |titude a|nd longi|
|000011a0| 74 75 64 65 2e 0d 0a 5c | 73 6d 61 6c 6c 73 6b 69 |tude...\|smallski|
|000011b0| 70 0d 0a 5c 69 74 65 6d | 7b 61 2e 7d 20 53 75 70 |p..\item|{a.} Sup|
|000011c0| 65 72 6e 6f 76 61 65 20 | 6f 66 20 54 79 70 65 20 |ernovae |of Type |
|000011d0| 49 20 28 53 4e 49 29 20 | 61 72 65 20 62 65 6c 69 |I (SNI) |are beli|
|000011e0| 65 76 65 64 20 74 6f 20 | 6f 63 63 75 72 20 77 68 |eved to |occur wh|
|000011f0| 65 6e 20 61 20 77 68 69 | 74 65 0d 0a 64 77 61 72 |en a whi|te..dwar|
|00001200| 66 2c 20 63 6f 6e 73 69 | 73 74 69 6e 67 20 6d 61 |f, consi|sting ma|
|00001210| 69 6e 6c 79 20 6f 66 20 | 63 61 72 62 6f 6e 20 61 |inly of |carbon a|
|00001220| 6e 64 20 6f 78 79 67 65 | 6e 2c 20 69 73 20 61 63 |nd oxyge|n, is ac|
|00001230| 63 72 65 74 69 6e 67 20 | 6d 61 74 74 65 72 20 69 |creting |matter i|
|00001240| 6e 20 61 0d 0a 63 6c 6f | 73 65 20 62 69 6e 61 72 |n a..clo|se binar|
|00001250| 79 20 73 79 73 74 65 6d | 2c 20 61 6e 64 20 69 73 |y system|, and is|
|00001260| 20 70 75 73 68 65 64 20 | 62 79 20 74 68 65 20 6d | pushed |by the m|
|00001270| 61 73 73 20 74 72 61 6e | 73 66 65 72 20 62 65 79 |ass tran|sfer bey|
|00001280| 6f 6e 64 20 74 68 65 0d | 0a 43 68 61 6e 64 72 61 |ond the.|.Chandra|
|00001290| 73 65 6b 61 68 61 72 20 | 6c 69 6d 69 74 20 6f 66 |sekahar |limit of|
|000012a0| 20 73 74 61 62 69 6c 69 | 74 79 5c 64 6f 74 73 0d | stabili|ty\dots.|
|000012b0| 0a 5c 69 74 65 6d 7b 62 | 2e 7d 20 54 68 65 20 60 |.\item{b|.} The `|
|000012c0| 60 64 6f 75 62 6c 65 20 | 71 75 61 73 61 72 22 20 |`double |quasar" |
|000012d0| 77 61 73 20 64 69 73 63 | 6f 76 65 72 65 64 20 69 |was disc|overed i|
|000012e0| 6e 20 31 39 37 39 20 61 | 73 20 61 20 70 61 69 72 |n 1979 a|s a pair|
|000012f0| 20 6f 66 0d 0a 71 75 61 | 73 61 72 73 2c 20 36 20 | of..qua|sars, 6 |
|00001300| 61 72 63 73 65 63 6f 6e | 64 73 20 61 70 61 72 74 |arcsecon|ds apart|
|00001310| 2c 20 77 69 74 68 20 69 | 64 65 6e 74 69 63 61 6c |, with i|dentical|
|00001320| 20 72 65 64 73 68 69 66 | 74 73 20 61 6e 64 20 73 | redshif|ts and s|
|00001330| 70 65 63 74 72 61 2e 20 | 54 68 65 0d 0a 69 6e 69 |pectra. |The..ini|
|00001340| 74 69 61 6c 20 67 75 65 | 73 73 20 74 68 61 74 20 |tial gue|ss that |
|00001350| 74 68 65 73 65 20 77 65 | 72 65 20 74 77 6f 20 69 |these we|re two i|
|00001360| 6d 61 67 65 73 20 6f 66 | 20 6f 6e 65 20 71 75 61 |mages of| one qua|
|00001370| 73 61 72 20 70 72 6f 64 | 75 63 65 64 20 62 79 20 |sar prod|uced by |
|00001380| 74 68 65 0d 0a 67 72 61 | 76 69 74 61 74 69 6f 6e |the..gra|vitation|
|00001390| 61 6c 20 6c 65 6e 73 20 | 65 66 66 65 63 74 5c 64 |al lens |effect\d|
|000013a0| 6f 74 73 0d 0a 5c 69 74 | 65 6d 7b 63 2e 7d 20 54 |ots..\it|em{c.} T|
|000013b0| 68 65 20 65 78 74 72 61 | 67 61 6c 61 63 74 69 63 |he extra|galactic|
|000013c0| 20 64 69 73 74 61 6e 63 | 65 20 73 63 61 6c 65 20 | distanc|e scale |
|000013d0| 73 74 69 6c 6c 20 64 65 | 70 65 6e 64 73 20 6f 6e |still de|pends on|
|000013e0| 20 74 68 65 20 75 73 65 | 20 6f 66 0d 0a 73 74 61 | the use| of..sta|
|000013f0| 6e 64 61 72 64 20 63 61 | 6e 64 6c 65 73 20 61 6e |ndard ca|ndles an|
|00001400| 64 20 73 74 61 6e 64 61 | 72 64 20 72 65 66 65 72 |d standa|rd refer|
|00001410| 65 6e 63 65 20 64 69 73 | 74 61 6e 63 65 73 20 28 |ence dis|tances (|
|00001420| 73 75 63 68 20 61 73 20 | 74 68 65 20 64 69 73 74 |such as |the dist|
|00001430| 61 6e 63 65 73 0d 0a 6f | 66 20 74 68 65 20 48 79 |ances..o|f the Hy|
|00001440| 61 64 65 73 20 73 74 61 | 72 20 63 6c 75 73 74 65 |ades sta|r cluste|
|00001450| 72 29 5c 64 6f 74 73 0d | 0a 5c 73 6d 61 6c 6c 73 |r)\dots.|.\smalls|
|00001460| 6b 69 70 0d 0a 4e 6f 77 | 20 77 65 20 73 74 61 72 |kip..Now| we star|
|00001470| 74 20 77 69 74 68 0d 0a | 24 24 5c 76 61 72 70 68 |t with..|$$\varph|
|00001480| 69 20 3d 2d 32 5c 70 69 | 28 5c 6e 75 5f 7b 5c 72 |i =-2\pi|(\nu_{\r|
|00001490| 6d 20 43 7d 74 2d 6e 29 | 5c 20 2c 5c 65 71 6e 6f |m C}t-n)|\ ,\eqno|
|000014a0| 20 28 31 2e 31 29 24 24 | 0d 0a 77 68 65 72 65 20 | (1.1)$$|..where |
|000014b0| 24 6e 24 20 69 73 20 61 | 6e 20 69 6e 74 65 67 65 |$n$ is a|n intege|
|000014c0| 72 20 65 6e 73 75 72 69 | 6e 67 20 74 68 61 74 20 |r ensuri|ng that |
|000014d0| 24 5c 76 61 72 70 68 69 | 24 20 73 74 61 79 73 20 |$\varphi|$ stays |
|000014e0| 69 6e 20 74 68 65 20 69 | 6e 74 65 72 76 61 6c 0d |in the i|nterval.|
|000014f0| 0a 24 2d 5c 70 69 3c 5c | 76 61 72 70 68 69 20 5c |.$-\pi<\|varphi \|
|00001500| 6c 65 20 5c 70 69 24 2c | 20 61 6e 64 20 77 68 65 |le \pi$,| and whe|
|00001510| 72 65 20 74 68 65 20 7a | 65 72 6f 20 70 6f 69 6e |re the z|ero poin|
|00001520| 74 20 6f 66 20 74 68 65 | 20 74 69 6d 65 20 73 63 |t of the| time sc|
|00001530| 61 6c 65 20 24 74 24 0d | 0a 68 61 73 20 62 65 65 |ale $t$.|.has bee|
|00001540| 6e 20 63 68 6f 73 65 6e | 20 73 75 63 68 20 74 68 |n chosen| such th|
|00001550| 61 74 20 24 5c 76 61 72 | 70 68 69 20 3d 30 24 20 |at $\var|phi =0$ |
|00001560| 77 68 65 6e 20 24 74 3d | 30 24 2e 0d 0a 0d 0a 5c |when $t=|0$.....\|
|00001570| 62 65 67 70 65 74 20 44 | 75 72 69 6e 67 20 74 68 |begpet D|uring th|
|00001580| 65 20 65 76 6f 6c 75 74 | 69 6f 6e 20 6f 66 20 61 |e evolut|ion of a|
|00001590| 20 73 74 61 72 2c 20 61 | 20 70 6f 69 6e 74 20 69 | star, a| point i|
|000015a0| 73 20 75 73 75 61 6c 6c | 79 0d 0a 20 72 65 61 63 |s usuall|y.. reac|
|000015b0| 68 65 64 2c 20 6a 75 73 | 74 20 62 65 66 6f 72 65 |hed, jus|t before|
|000015c0| 20 74 68 65 20 63 6f 72 | 65 20 62 75 72 6e 69 6e | the cor|e burnin|
|000015d0| 67 20 69 73 20 66 69 6e | 69 73 68 65 64 2c 20 7b |g is fin|ished, {|
|000015e0| 5c 69 74 20 77 68 65 6e | 20 6c 61 79 65 72 73 20 |\it when| layers |
|000015f0| 61 62 6f 76 65 0d 0a 74 | 68 65 20 63 6f 72 65 20 |above..t|he core |
|00001600| 62 65 63 6f 6d 65 20 74 | 68 65 72 6d 61 6c 6c 79 |become t|hermally|
|00001610| 20 75 6e 73 74 61 62 6c | 65 7d 2c 20 61 6e 64 20 | unstabl|e}, and |
|00001620| 6c 61 72 67 65 20 73 63 | 61 6c 65 20 6d 61 73 73 |large sc|ale mass|
|00001630| 20 6d 6f 74 69 6f 6e 73 | 5c 64 6f 74 73 0d 0a 5c | motions|\dots..\|
|00001640| 65 6e 64 70 65 74 0d 0a | 0d 0a 54 68 65 20 6f 72 |endpet..|..The or|
|00001650| 74 68 6f 6e 6f 72 6d 61 | 6c 69 74 79 20 63 6f 6e |thonorma|lity con|
|00001660| 64 69 74 69 6f 6e 0d 0a | 24 24 5c 69 6e 74 20 59 |dition..|$$\int Y|
|00001670| 5f 7b 6c 5e 7b 5c 70 72 | 69 6d 65 7d 7d 5e 7b 6d |_{l^{\pr|ime}}^{m|
|00001680| 5e 7b 5c 70 72 69 6d 65 | 7d 7d 28 5c 76 61 72 74 |^{\prime|}}(\vart|
|00001690| 68 65 74 61 2c 5c 76 61 | 72 70 68 69 29 59 5f 6c |heta,\va|rphi)Y_l|
|000016a0| 5e 7b 6d 5c 61 73 74 7d | 0d 0a 28 7b 6d 6d 5e 7b |^{m\ast}|..({mm^{|
|000016b0| 5c 70 72 69 6d 65 7d 7d | 29 20 5c 65 71 6e 6f 28 |\prime}}|) \eqno(|
|000016c0| 31 2e 32 29 24 24 0d 0a | 69 73 20 75 73 65 64 20 |1.2)$$..|is used |
|000016d0| 74 6f 20 73 6f 6c 76 65 | 20 66 6f 72 20 74 68 65 |to solve| for the|
|000016e0| 20 63 6f 65 66 66 69 63 | 69 65 6e 74 73 3b 20 74 | coeffic|ients; t|
|000016f0| 68 65 0d 0a 61 73 74 65 | 72 69 73 6b 20 69 6e 20 |he..aste|risk in |
|00001700| 73 75 70 65 72 73 63 72 | 69 70 74 20 64 65 6e 6f |superscr|ipt deno|
|00001710| 74 65 73 20 63 6f 6d 70 | 6c 65 78 20 63 6f 6e 6a |tes comp|lex conj|
|00001720| 75 67 61 74 69 6f 6e 2e | 0d 0a 0d 0a 55 73 69 6e |ugation.|....Usin|
|00001730| 67 20 74 68 65 20 65 78 | 70 6c 69 63 69 74 20 65 |g the ex|plicit e|
|00001740| 78 70 72 65 73 73 69 6f | 6e 73 20 66 6f 72 20 74 |xpressio|ns for t|
|00001750| 68 65 20 73 70 68 65 72 | 69 63 61 6c 20 68 61 72 |he spher|ical har|
|00001760| 6d 6f 6e 69 63 73 20 61 | 6e 64 20 74 68 65 20 64 |monics a|nd the d|
|00001770| 65 66 69 6e 69 74 69 6f | 6e 0d 0a 6f 66 20 74 68 |efinitio|n..of th|
|00001780| 65 20 61 73 73 6f 63 69 | 61 74 65 64 20 4c 65 67 |e associ|ated Leg|
|00001790| 65 6e 64 72 65 20 66 75 | 6e 63 74 69 6f 6e 73 20 |endre fu|nctions |
|000017a0| 24 50 5f 6c 5e 6d 28 78 | 29 24 20 69 6e 20 41 70 |$P_l^m(x|)$ in Ap|
|000017b0| 70 65 6e 64 69 78 20 41 | 2e 31 2c 20 77 65 0d 0a |pendix A|.1, we..|
|000017c0| 63 61 6e 20 72 65 77 72 | 69 74 65 20 28 31 2e 32 |can rewr|ite (1.2|
|000017d0| 29 20 61 73 0d 0a 24 24 | 63 5f 6c 5e 6d 28 74 29 |) as..$$|c_l^m(t)|
|000017e0| 3d 66 5f 6c 5e 6d 5c 69 | 6e 74 5f 7b 2d 31 7d 5e |=f_l^m\i|nt_{-1}^|
|000017f0| 31 20 64 78 5c 69 6e 74 | 5f 7b 2d 5c 70 69 7d 5e |1 dx\int|_{-\pi}^|
|00001800| 7b 5c 70 69 7d 0d 0a 64 | 5c 76 61 72 70 68 69 20 |{\pi}..d|\varphi |
|00001810| 5c 2c 42 28 78 2c 5c 76 | 61 72 70 68 69 2c 74 29 |\,B(x,\v|arphi,t)|
|00001820| 7b 5c 72 6d 20 65 7d 5e | 7b 2d 7b 5c 72 6d 20 69 |{\rm e}^|{-{\rm i|
|00001830| 7d 6d 5c 76 61 72 70 68 | 69 7d 50 5f 6c 5e 6d 28 |}m\varph|i}P_l^m(|
|00001840| 78 29 5c 20 2c 5c 65 71 | 6e 6f 28 31 2e 33 29 24 |x)\ ,\eq|no(1.3)$|
|00001850| 24 0d 0a 77 68 65 72 65 | 20 24 78 3d 5c 63 6f 73 |$..where| $x=\cos|
|00001860| 5c 76 61 72 74 68 65 74 | 61 24 2c 20 61 6e 64 20 |\varthet|a$, and |
|00001870| 74 68 65 20 66 61 63 74 | 6f 72 20 6f 66 20 70 72 |the fact|or of pr|
|00001880| 6f 70 6f 72 74 69 6f 6e | 61 6c 69 74 79 20 69 73 |oportion|ality is|
|00001890| 0d 0a 24 24 66 5f 6c 5e | 6d 3d 28 2d 31 29 5e 6d |..$$f_l^|m=(-1)^m|
|000018a0| 5c 2c 20 5c 2c 20 5c 73 | 71 72 74 7b 7b 32 6c 20 |\, \, \s|qrt{{2l |
|000018b0| 2b 31 5c 6f 76 65 72 20 | 34 5c 70 69 7d 7b 28 6c |+1\over |4\pi}{(l|
|000018c0| 20 2d 6d 29 5c 2c 20 21 | 5c 6f 76 65 72 20 28 6c | -m)\, !|\over (l|
|000018d0| 20 2b 6d 29 5c 2c 0d 0a | 20 21 7d 7d 5c 65 71 6e | +m)\,..| !}}\eqn|
|000018e0| 6f 28 31 2e 34 29 24 24 | 0d 0a 66 6f 72 20 24 6d |o(1.4)$$|..for $m|
|000018f0| 5c 67 65 20 30 24 2e 20 | 57 65 20 68 61 76 65 20 |\ge 0$. |We have |
|00001900| 74 77 6f 20 69 6e 74 65 | 67 72 61 74 69 6f 6e 73 |two inte|grations|
|00001910| 20 74 6f 20 70 65 72 66 | 6f 72 6d 2c 20 6f 6e 65 | to perf|orm, one|
|00001920| 20 46 6f 75 72 69 65 72 | 20 74 72 61 6e 73 66 6f | Fourier| transfo|
|00001930| 72 6d 0d 0a 6f 76 65 72 | 20 74 68 65 20 6c 6f 6e |rm..over| the lon|
|00001940| 67 69 74 75 64 65 20 77 | 69 6e 64 6f 77 2c 20 77 |gitude w|indow, w|
|00001950| 68 69 63 68 20 69 73 20 | 64 6f 6e 65 20 6e 75 6d |hich is |done num|
|00001960| 65 72 69 63 61 6c 6c 79 | 20 75 73 69 6e 67 20 61 |erically| using a|
|00001970| 20 66 61 73 74 0d 0a 46 | 6f 75 72 69 65 72 20 74 | fast..F|ourier t|
|00001980| 72 61 6e 73 66 6f 72 6d | 2c 20 61 6e 64 20 6f 6e |ransform|, and on|
|00001990| 65 20 4c 65 67 65 6e 64 | 72 65 20 74 72 61 6e 73 |e Legend|re trans|
|000019a0| 66 6f 72 6d 2c 20 66 6f | 72 20 77 68 69 63 68 20 |form, fo|r which |
|000019b0| 77 65 20 61 70 70 6c 79 | 20 61 6e 0d 0a 69 6d 70 |we apply| an..imp|
|000019c0| 72 6f 76 65 64 20 28 69 | 6e 20 72 65 6c 61 74 69 |roved (i|n relati|
|000019d0| 6f 6e 20 74 6f 20 53 74 | 65 6e 66 6c 6f 20 61 6e |on to St|enflo an|
|000019e0| 64 20 56 6f 67 65 6c 20 | 31 39 38 36 29 20 6e 75 |d Vogel |1986) nu|
|000019f0| 6d 65 72 69 63 61 6c 20 | 6d 65 74 68 6f 64 20 61 |merical |method a|
|00001a00| 70 70 72 6f 70 72 69 61 | 74 65 0d 0a 77 68 65 6e |ppropria|te..when|
|00001a10| 20 74 68 65 20 73 70 61 | 74 69 61 6c 20 72 65 73 | the spa|tial res|
|00001a20| 6f 6c 75 74 69 6f 6e 20 | 6f 66 20 74 68 65 20 64 |olution |of the d|
|00001a30| 61 74 61 20 69 73 20 6c | 69 6d 69 74 65 64 2c 20 |ata is l|imited, |
|00001a40| 61 73 20 64 65 73 63 72 | 69 62 65 64 20 69 6e 20 |as descr|ibed in |
|00001a50| 41 70 70 65 6e 64 69 78 | 0d 0a 41 2e 32 2e 0d 0a |Appendix|..A.2...|
|00001a60| 0d 0a 0d 0a 7b 5c 69 74 | 20 5b 4e 6f 77 20 77 65 |....{\it| [Now we|
|00001a70| 20 77 69 6c 6c 20 63 6f | 64 65 20 74 77 6f 20 66 | will co|de two f|
|00001a80| 69 67 75 72 65 73 0d 0a | 6e 65 78 74 20 74 6f 20 |igures..|next to |
|00001a90| 6f 6e 65 20 61 6e 6f 74 | 68 65 72 2c 20 77 69 74 |one anot|her, wit|
|00001aa0| 68 20 61 20 6d 6f 64 69 | 66 69 65 64 0d 0a 61 72 |h a modi|fied..ar|
|00001ab0| 72 61 6e 67 65 6d 65 6e | 74 3b 20 74 68 69 73 20 |rangemen|t; this |
|00001ac0| 69 73 20 6f 6e 6c 79 20 | 74 6f 20 62 65 20 75 73 |is only |to be us|
|00001ad0| 65 64 0d 0a 69 66 20 74 | 68 65 20 61 6d 6f 75 6e |ed..if t|he amoun|
|00001ae0| 74 20 6f 66 20 74 65 78 | 74 20 69 6e 20 74 68 65 |t of tex|t in the|
|00001af0| 20 6c 65 67 65 6e 64 73 | 20 6f 66 20 74 68 65 0d | legends| of the.|
|00001b00| 0a 74 77 6f 20 66 69 67 | 75 72 65 73 20 69 73 20 |.two fig|ures is |
|00001b10| 71 75 69 74 65 20 64 69 | 66 66 65 72 65 6e 74 2e |quite di|fferent.|
|00001b20| 5d 7d 0d 0a 5c 62 65 67 | 66 69 67 20 36 2e 35 20 |]}..\beg|fig 6.5 |
|00001b30| 63 6d 0d 0a 5c 66 69 67 | 75 72 65 7b 31 2e 34 7d |cm..\fig|ure{1.4}|
|00001b40| 7b 54 68 69 73 20 69 73 | 20 74 68 65 20 66 69 72 |{This is| the fir|
|00001b50| 73 74 20 73 6d 61 6c 6c | 20 66 69 67 75 72 65 20 |st small| figure |
|00001b60| 6c 65 67 65 6e 64 7d 0d | 0a 5c 66 69 67 75 72 65 |legend}.|.\figure|
|00001b70| 7b 31 2e 35 7d 7b 54 68 | 69 73 20 69 73 20 74 68 |{1.5}{Th|is is th|
|00001b80| 65 20 65 78 74 72 65 6d | 65 6c 79 20 6c 6f 6e 67 |e extrem|ely long|
|00001b90| 20 6c 65 67 65 6e 64 20 | 6f 66 20 74 68 65 20 73 | legend |of the s|
|00001ba0| 65 63 6f 6e 64 20 66 69 | 67 75 72 65 0d 0a 61 6e |econd fi|gure..an|
|00001bb0| 64 20 73 68 6f 75 6c 64 | 20 74 68 65 72 65 66 6f |d should| therefo|
|00001bc0| 72 65 20 62 65 20 74 79 | 70 65 73 65 74 20 75 73 |re be ty|peset us|
|00001bd0| 69 6e 67 20 20 74 68 65 | 20 66 75 6c 6c 20 77 69 |ing the| full wi|
|00001be0| 64 74 68 20 6f 66 20 74 | 68 65 20 74 79 70 65 20 |dth of t|he type |
|00001bf0| 61 72 65 61 2e 20 46 6f | 72 0d 0a 74 79 70 6f 67 |area. Fo|r..typog|
|00001c00| 72 61 70 68 69 63 61 6c | 20 61 6e 64 20 61 65 73 |raphical| and aes|
|00001c10| 74 68 65 74 69 63 20 72 | 65 61 73 6f 6e 73 20 69 |thetic r|easons i|
|00001c20| 74 20 77 6f 75 6c 64 20 | 62 65 20 75 6e 61 63 63 |t would |be unacc|
|00001c30| 65 70 74 61 62 6c 65 20 | 69 66 20 74 68 65 73 65 |eptable |if these|
|00001c40| 0d 0a 6c 65 67 65 6e 64 | 73 20 77 65 72 65 20 20 |..legend|s were |
|00001c50| 73 65 74 20 6e 65 78 74 | 20 74 6f 20 6f 6e 65 20 |set next| to one |
|00001c60| 61 6e 6f 74 68 65 72 0d | 0a 69 6e 20 74 77 6f 20 |another.|.in two |
|00001c70| 63 6f 6c 75 6d 6e 73 2c | 20 77 69 74 68 20 61 20 |columns,| with a |
|00001c80| 6c 65 67 65 6e 64 0d 0a | 6f 66 20 20 32 20 6c 69 |legend..|of 2 li|
|00001c90| 6e 65 73 20 66 6f 72 20 | 74 68 65 20 66 69 72 73 |nes for |the firs|
|00001ca0| 74 20 66 69 67 75 72 65 | 20 61 6e 64 20 61 20 6c |t figure| and a l|
|00001cb0| 65 67 65 6e 64 20 6f 66 | 20 31 36 20 6c 69 6e 65 |egend of| 16 line|
|00001cc0| 73 20 66 6f 72 20 74 68 | 65 0d 0a 73 65 63 6f 6e |s for th|e..secon|
|00001cd0| 64 2e 20 54 68 65 72 65 | 66 6f 72 65 20 20 77 65 |d. There|fore we|
|00001ce0| 20 73 75 67 67 65 73 74 | 20 74 68 61 74 20 20 74 | suggest| that t|
|00001cf0| 68 65 20 6c 65 67 65 6e | 64 73 20 66 6f 72 20 74 |he legen|ds for t|
|00001d00| 68 65 0d 0a 74 77 6f 20 | 66 69 67 75 72 65 73 20 |he..two |figures |
|00001d10| 73 68 6f 75 6c 64 20 62 | 65 20 70 6c 61 63 65 64 |should b|e placed|
|00001d20| 20 6f 6e 65 0d 0a 20 62 | 65 6c 6f 77 20 74 68 65 | one.. b|elow the|
|00001d30| 20 20 6f 74 68 65 72 2e | 20 49 74 20 69 73 20 6e | other.| It is n|
|00001d40| 6f 74 20 6e 65 63 65 73 | 73 61 72 79 20 74 6f 20 |ot neces|sary to |
|00001d50| 70 6c 61 63 65 0d 0a 74 | 68 65 20 66 69 67 75 72 |place..t|he figur|
|00001d60| 65 20 6e 75 6d 62 65 72 | 73 20 62 65 6c 6f 77 20 |e number|s below |
|00001d70| 6f 72 20 62 65 73 69 64 | 65 20 20 74 68 65 20 74 |or besid|e the t|
|00001d80| 77 6f 20 66 69 67 75 72 | 65 73 20 62 65 63 61 75 |wo figur|es becau|
|00001d90| 73 65 20 69 74 20 73 68 | 6f 75 6c 64 0d 0a 62 65 |se it sh|ould..be|
|00001da0| 20 63 6c 65 61 72 0d 0a | 74 68 61 74 20 74 68 65 | clear..|that the|
|00001db0| 20 6c 65 66 74 20 6f 6e | 65 20 69 73 20 74 68 65 | left on|e is the|
|00001dc0| 20 66 69 72 73 74 20 66 | 69 67 75 72 65 20 61 6e | first f|igure an|
|00001dd0| 64 20 74 68 65 20 72 69 | 67 68 74 20 6f 6e 65 20 |d the ri|ght one |
|00001de0| 74 68 65 20 73 65 63 6f | 6e 64 20 20 20 7d 0d 0a |the seco|nd }..|
|00001df0| 5c 65 6e 64 66 69 67 0d | 0a 5c 74 69 74 6c 65 62 |\endfig.|.\titleb|
|00001e00| 20 7b 31 2e 32 7d 7b 52 | 65 73 75 6c 74 73 20 66 | {1.2}{R|esults f|
|00001e10| 6f 72 20 74 68 65 20 5a | 6f 6e 61 6c 20 4d 6f 64 |or the Z|onal Mod|
|00001e20| 65 73 7d 0d 0a 54 68 65 | 20 70 6f 77 65 72 20 73 |es}..The| power s|
|00001e30| 70 65 63 74 72 61 20 24 | 50 63 5f 6c 5e 30 28 5c |pectra $|Pc_l^0(\|
|00001e40| 6e 75 29 24 20 66 6f 72 | 20 74 68 65 20 7a 6f 6e |nu)$ for| the zon|
|00001e50| 61 6c 20 6d 6f 64 65 73 | 20 28 24 6d 3d 30 24 29 |al modes| ($m=0$)|
|00001e60| 2c 20 63 6f 6d 70 75 74 | 65 64 0d 0a 77 69 74 68 |, comput|ed..with|
|00001e70| 20 6f 75 72 20 61 70 6f | 64 69 7a 65 64 20 64 61 | our apo|dized da|
|00001e80| 74 61 20 73 65 74 2c 0d | 0a 61 72 65 20 64 69 73 |ta set,.|.are dis|
|00001e90| 70 6c 61 79 65 64 20 69 | 6e 20 46 69 67 2e 5c 74 |played i|n Fig.\t|
|00001ea0| 73 20 31 2e 31 20 41 73 | 20 74 68 65 20 6d 6f 64 |s 1.1 As| the mod|
|00001eb0| 65 73 20 6f 66 20 6f 64 | 64 20 61 6e 64 20 65 76 |es of od|d and ev|
|00001ec0| 65 6e 20 70 61 72 69 74 | 79 0d 0a 62 65 68 61 76 |en parit|y..behav|
|00001ed0| 65 5c 66 6f 6e 6f 74 65 | 7b 54 68 65 20 73 70 68 |e\fonote|{The sph|
|00001ee0| 65 72 69 63 61 6c 20 68 | 61 72 6d 6f 6e 69 63 73 |erical h|armonics|
|00001ef0| 20 61 72 65 20 67 69 76 | 65 6e 20 62 79 0d 0a 24 | are giv|en by..$|
|00001f00| 24 59 5f 6c 5e 6d 28 5c | 76 61 72 74 68 65 74 61 |$Y_l^m(\|vartheta|
|00001f10| 20 2c 5c 76 61 72 70 68 | 69 29 3d 28 2d 31 29 5e | ,\varph|i)=(-1)^|
|00001f20| 6d 5c 2c 20 5c 2c 20 5c | 73 71 72 74 7b 7b 32 6c |m\, \, \|sqrt{{2l|
|00001f30| 20 2b 31 5c 6f 76 65 72 | 20 34 5c 70 69 7d 0d 0a | +1\over| 4\pi}..|
|00001f40| 7b 28 6c 20 2d 6d 29 5c | 2c 20 21 5c 6f 76 65 72 |{(l -m)\|, !\over|
|00001f50| 20 28 6c 20 2b 6d 29 5c | 2c 20 21 7d 7d 5c 2c 20 | (l +m)\|, !}}\, |
|00001f60| 5c 2c 20 5c 2c 0d 0a 7b | 5c 72 6d 20 65 7d 5e 7b |\, \,..{|\rm e}^{|
|00001f70| 69 6d 5c 76 61 72 70 68 | 69 7d 50 5f 6c 5e 6d 28 |im\varph|i}P_l^m(|
|00001f80| 5c 63 6f 73 5c 76 61 72 | 74 68 65 74 61 29 24 24 |\cos\var|theta)$$|
|00001f90| 0d 0a 66 6f 72 20 24 6d | 5c 67 65 20 30 24 2e 20 |..for $m|\ge 0$. |
|00001fa0| 57 68 65 6e 20 24 6d 24 | 20 69 73 20 6e 65 67 61 |When $m$| is nega|
|00001fb0| 74 69 76 65 2c 20 61 20 | 63 6f 6d 6d 6f 6e 20 64 |tive, a |common d|
|00001fc0| 65 66 69 6e 69 74 69 6f | 6e 5c 64 6f 74 73 7d 0d |efinitio|n\dots}.|
|00001fd0| 0a 73 6f 20 64 69 66 66 | 65 72 65 6e 74 6c 79 2c |.so diff|erently,|
|00001fe0| 20 74 68 65 79 20 61 72 | 65 20 70 6c 6f 74 74 65 | they ar|e plotte|
|00001ff0| 64 20 73 65 70 61 72 61 | 74 65 6c 79 2e 20 4f 64 |d separa|tely. Od|
|00002000| 64 20 70 61 72 69 74 79 | 20 28 66 6f 72 20 6f 64 |d parity| (for od|
|00002010| 64 20 76 61 6c 75 65 73 | 20 6f 66 0d 0a 24 6c 5c |d values| of..$l\|
|00002020| 2c 20 24 29 20 63 6f 72 | 72 65 73 70 6f 6e 64 73 |, $) cor|responds|
|00002030| 20 74 6f 20 6d 6f 64 65 | 73 20 74 68 61 74 20 61 | to mode|s that a|
|00002040| 72 65 20 61 6e 74 69 2d | 73 79 6d 6d 65 74 72 69 |re anti-|symmetri|
|00002050| 63 20 77 69 74 68 20 72 | 65 73 70 65 63 74 20 74 |c with r|espect t|
|00002060| 6f 0d 0a 72 65 66 6c 65 | 63 74 69 6f 6e 73 20 69 |o..refle|ctions i|
|00002070| 6e 20 74 68 65 20 65 71 | 75 61 74 6f 72 69 61 6c |n the eq|uatorial|
|00002080| 20 70 6c 61 6e 65 2c 20 | 65 76 65 6e 20 70 61 72 | plane, |even par|
|00002090| 69 74 79 20 74 6f 20 73 | 79 6d 6d 65 74 72 69 63 |ity to s|ymmetric|
|000020a0| 20 6d 6f 64 65 73 2e 0d | 0a 54 68 65 20 76 65 63 | modes..|.The vec|
|000020b0| 74 6f 72 73 20 24 5c 76 | 65 63 20 7b 78 2c 20 79 |tors $\v|ec {x, y|
|000020c0| 2c 20 7a 7d 24 20 63 72 | 65 61 74 65 20 61 20 72 |, z}$ cr|eate a r|
|000020d0| 69 67 68 74 2d 68 61 6e | 64 20 63 6f 6f 72 64 69 |ight-han|d coordi|
|000020e0| 6e 61 74 65 20 73 79 73 | 74 65 6d 2e 0d 0a 5c 74 |nate sys|tem...\t|
|000020f0| 69 74 6c 65 63 20 7b 31 | 2e 32 2e 31 7d 7b 49 6e |itlec {1|.2.1}{In|
|00002100| 74 65 72 70 6f 6c 61 74 | 69 6f 6e 7d 0d 0a 49 6e |terpolat|ion}..In|
|00002110| 20 70 72 61 63 74 69 63 | 65 20 74 68 65 20 63 6f | practic|e the co|
|00002120| 6e 74 69 6e 75 6f 75 73 | 20 63 61 70 61 63 69 74 |ntinuous| capacit|
|00002130| 79 20 64 69 73 74 72 69 | 62 75 74 69 6f 6e 20 66 |y distri|bution f|
|00002140| 75 6e 63 74 69 6f 6e 20 | 69 73 20 72 65 70 6c 61 |unction |is repla|
|00002150| 63 65 64 20 62 79 0d 0a | 61 20 64 69 73 63 72 65 |ced by..|a discre|
|00002160| 74 65 20 73 65 74 20 6f | 66 20 70 61 69 72 73 20 |te set o|f pairs |
|00002170| 28 24 77 2c 78 24 29 20 | 63 6f 76 65 72 69 6e 67 |($w,x$) |covering|
|00002180| 20 74 68 65 20 66 75 6c | 6c 20 72 61 6e 67 65 20 | the ful|l range |
|00002190| 6f 66 20 74 68 65 0d 0a | 61 62 73 6f 72 70 74 69 |of the..|absorpti|
|000021a0| 6f 6e 5c 64 6f 74 73 0d | 0a 0d 0a 54 6f 20 74 61 |on\dots.|...To ta|
|000021b0| 6b 65 20 69 6e 74 6f 20 | 61 63 63 6f 75 6e 74 20 |ke into |account |
|000021c0| 74 68 61 74 20 73 6f 6d | 65 20 6f 66 20 74 68 65 |that som|e of the|
|000021d0| 20 70 61 72 74 69 63 6c | 65 73 20 6d 61 79 20 72 | particl|es may r|
|000021e0| 65 6d 61 69 6e 0d 0a 63 | 6c 6f 73 65 20 74 6f 67 |emain..c|lose tog|
|000021f0| 65 74 68 65 72 20 77 68 | 69 6c 65 20 6f 74 68 65 |ether wh|ile othe|
|00002200| 72 73 20 77 69 6c 6c 20 | 6d 6f 76 65 20 61 77 61 |rs will |move awa|
|00002210| 79 2c 20 77 65 20 69 6e | 74 72 6f 64 75 63 65 20 |y, we in|troduce |
|00002220| 74 68 65 20 6e 6f 74 69 | 6f 6e 20 6f 66 0d 0a 63 |the noti|on of..c|
|00002230| 6c 75 73 74 65 72 73 2e | 0d 0a 5c 62 65 67 74 61 |lusters.|..\begta|
|00002240| 62 20 32 2e 35 20 63 6d | 0d 0a 5c 74 61 62 63 61 |b 2.5 cm|..\tabca|
|00002250| 70 7b 31 2e 31 7d 7b 54 | 68 69 73 20 54 61 62 6c |p{1.1}{T|his Tabl|
|00002260| 65 20 77 69 6c 6c 20 6e | 6f 74 20 62 65 20 70 72 |e will n|ot be pr|
|00002270| 6f 64 75 63 65 64 20 75 | 73 69 6e 67 20 5c 54 65 |oduced u|sing \Te|
|00002280| 58 2c 20 62 75 74 20 77 | 69 6c 6c 20 62 65 0d 0a |X, but w|ill be..|
|00002290| 70 61 73 74 65 64 20 69 | 6e 7d 0d 0a 5c 65 6e 64 |pasted i|n}..\end|
|000022a0| 74 61 62 0d 0a 5c 76 66 | 69 6c 6c 5c 65 6a 65 63 |tab..\vf|ill\ejec|
|000022b0| 74 0d 0a 5c 6e 75 6c 6c | 5c 76 73 6b 69 70 30 70 |t..\null|\vskip0p|
|000022c0| 74 20 70 6c 75 73 32 30 | 66 69 6c 6c 0d 0a 5c 6e |t plus20|fill..\n|
|000022d0| 6f 69 6e 64 65 6e 74 20 | 5b 7b 5c 69 74 20 54 68 |oindent |[{\it Th|
|000022e0| 69 73 20 70 61 67 65 20 | 69 73 20 6c 65 66 74 20 |is page |is left |
|000022f0| 62 6c 61 6e 6b 20 62 65 | 63 61 75 73 65 20 74 68 |blank be|cause th|
|00002300| 65 20 6e 65 78 74 20 73 | 65 63 74 69 6f 6e 20 6f |e next s|ection o|
|00002310| 66 20 7d 0d 0a 5c 76 65 | 72 62 7c 5c 74 69 74 6c |f }..\ve|rb|\titl|
|00002320| 65 61 7c 20 7b 5c 69 74 | 20 6d 75 73 74 20 62 65 |ea| {\it| must be|
|00002330| 67 69 6e 20 6f 6e 20 61 | 20 72 69 67 68 74 2d 68 |gin on a| right-h|
|00002340| 61 6e 64 20 70 61 67 65 | 20 28 68 65 72 65 7d 0d |and page| (here}.|
|00002350| 0a 5c 76 65 72 62 7c 5c | 72 65 66 65 72 65 6e 63 |.\verb|\|referenc|
|00002360| 65 7c 7b 5c 69 74 20 29 | 7d 5d 0d 0a 5c 62 65 67 |e|{\it )|}]..\beg|
|00002370| 72 65 66 62 6f 6f 6b 7b | 52 65 66 65 72 65 6e 63 |refbook{|Referenc|
|00002380| 65 73 7d 0d 0a 5c 72 65 | 66 20 41 6d 65 73 2c 20 |es}..\re|f Ames, |
|00002390| 57 2e 46 2e 20 28 31 39 | 36 39 29 3a 20 7b 5c 69 |W.F. (19|69): {\i|
|000023a0| 74 20 4e 75 6d 65 72 69 | 63 61 6c 20 4d 65 74 68 |t Numeri|cal Meth|
|000023b0| 6f 64 73 20 66 6f 72 20 | 50 61 72 74 69 61 6c 20 |ods for |Partial |
|000023c0| 44 69 66 66 65 72 65 6e | 74 69 61 6c 0d 0a 45 71 |Differen|tial..Eq|
|000023d0| 75 61 74 69 6f 6e 73 7d | 20 28 42 61 72 6e 65 73 |uations}| (Barnes|
|000023e0| 20 61 6e 64 20 4e 6f 62 | 6c 65 2c 20 4e 65 77 20 | and Nob|le, New |
|000023f0| 59 6f 72 6b 29 0d 0a 5c | 72 65 66 20 41 72 6c 69 |York)..\|ref Arli|
|00002400| 6e 67 65 72 2c 20 42 2e | 47 2e 20 28 31 39 38 36 |nger, B.|G. (1986|
|00002410| 29 3a 20 60 60 43 6f 6d | 70 75 74 61 74 69 6f 6e |): ``Com|putation|
|00002420| 20 6f 66 20 53 75 70 65 | 72 73 6f 6e 69 63 20 46 | of Supe|rsonic F|
|00002430| 6c 6f 77 20 49 6e 63 6c | 75 64 69 6e 67 0d 0a 4c |low Incl|uding..L|
|00002440| 65 61 64 69 6e 67 2d 45 | 64 67 65 20 56 6f 72 74 |eading-E|dge Vort|
|00002450| 65 78 20 46 6c 6f 77 73 | 20 75 73 69 6e 67 20 4d |ex Flows| using M|
|00002460| 61 72 63 68 69 6e 67 20 | 45 75 6c 65 72 20 54 65 |arching |Euler Te|
|00002470| 63 68 6e 69 71 75 65 73 | 27 27 2c 20 69 6e 20 50 |chniques|'', in P|
|00002480| 72 6f 63 2e 0d 0a 49 6e | 74 2e 20 53 79 6d 70 2e |roc...In|t. Symp.|
|00002490| 20 43 6f 6d 70 2e 20 46 | 6c 75 69 64 20 44 79 6e | Comp. F|luid Dyn|
|000024a0| 61 6d 69 63 73 2c 20 65 | 64 2e 20 62 79 20 4b 2e |amics, e|d. by K.|
|000024b0| 20 4f 73 68 69 6d 61 20 | 28 4a 61 70 61 6e 20 43 | Oshima |(Japan C|
|000024c0| 6f 6d 70 75 74 61 74 69 | 6f 6e 61 6c 0d 0a 46 6c |omputati|onal..Fl|
|000024d0| 75 69 64 20 44 79 6e 61 | 6d 69 63 73 20 53 6f 63 |uid Dyna|mics Soc|
|000024e0| 69 65 74 79 2c 20 54 6f | 6b 79 6f 29 20 56 6f 6c |iety, To|kyo) Vol|
|000024f0| 2e 20 32 2c 20 70 70 2e | 7e 31 2d 2d 31 32 0d 0a |. 2, pp.|~1--12..|
|00002500| 5c 72 65 66 20 42 61 69 | 6c 65 79 2c 20 46 2e 52 |\ref Bai|ley, F.R|
|00002510| 2e 20 28 31 39 38 36 29 | 3a 20 60 60 4f 76 65 72 |. (1986)|: ``Over|
|00002520| 76 69 65 77 20 6f 66 20 | 4e 41 53 41 27 73 20 4e |view of |NASA's N|
|00002530| 75 6d 65 72 69 63 61 6c | 20 41 65 72 6f 64 79 6e |umerical| Aerodyn|
|00002540| 61 6d 69 63 0d 0a 53 69 | 6d 75 6c 61 74 69 6f 6e |amic..Si|mulation|
|00002550| 20 50 72 6f 67 72 61 6d | 22 2c 20 69 6e 20 50 72 | Program|", in Pr|
|00002560| 6f 63 2e 20 49 6e 74 2e | 20 53 79 6d 70 2e 20 43 |oc. Int.| Symp. C|
|00002570| 6f 6d 70 2e 20 46 6c 75 | 69 64 20 44 79 6e 61 6d |omp. Flu|id Dynam|
|00002580| 69 63 73 2c 20 65 64 2e | 0d 0a 62 79 20 4b 2e 20 |ics, ed.|..by K. |
|00002590| 4f 73 68 69 6d 61 20 28 | 4a 61 70 61 6e 20 43 6f |Oshima (|Japan Co|
|000025a0| 6d 70 75 74 61 74 69 6f | 6e 61 6c 20 46 6c 75 69 |mputatio|nal Flui|
|000025b0| 64 20 44 79 6e 61 6d 69 | 63 73 20 53 6f 63 69 65 |d Dynami|cs Socie|
|000025c0| 74 79 2c 0d 0a 54 6f 6b | 79 6f 29 20 56 6f 6c 2e |ty,..Tok|yo) Vol.|
|000025d0| 20 31 2c 20 70 70 2e 20 | 32 31 2d 2d 33 32 0d 0a | 1, pp. |21--32..|
|000025e0| 5c 72 65 66 20 42 65 6c | 6f 74 73 65 72 6b 6f 76 |\ref Bel|otserkov|
|000025f0| 73 6b 69 69 2c 20 4f 2e | 4d 2e 2c 20 43 68 75 73 |skii, O.|M., Chus|
|00002600| 68 6b 69 6e 2c 20 50 2e | 49 2e 20 28 31 39 36 35 |hkin, P.|I. (1965|
|00002610| 29 3a 20 49 6e 20 7b 5c | 69 74 20 42 61 73 69 63 |): In {\|it Basic|
|00002620| 0d 0a 44 65 76 65 6c 6f | 70 6d 65 6e 74 73 20 69 |..Develo|pments i|
|00002630| 6e 20 46 6c 75 69 64 20 | 44 79 6e 61 6d 69 63 73 |n Fluid |Dynamics|
|00002640| 7d 2c 20 65 64 2e 20 62 | 79 20 4d 2e 20 48 6f 6c |}, ed. b|y M. Hol|
|00002650| 74 20 28 41 63 61 64 65 | 6d 69 63 2c 20 4e 65 77 |t (Acade|mic, New|
|00002660| 20 59 6f 72 6b 29 0d 0a | 70 70 2e 20 31 2d 31 32 | York)..|pp. 1-12|
|00002670| 36 0d 0a 5c 72 65 66 20 | 43 68 65 73 74 65 72 2c |6..\ref |Chester,|
|00002680| 20 43 2e 52 2e 20 28 31 | 39 37 31 29 3a 20 7b 5c | C.R. (1|971): {\|
|00002690| 69 74 20 54 65 63 68 6e | 69 71 75 65 73 20 69 6e |it Techn|iques in|
|000026a0| 20 50 61 72 74 69 61 6c | 20 44 69 66 66 65 72 65 | Partial| Differe|
|000026b0| 6e 74 69 61 6c 0d 0a 45 | 71 75 61 74 69 6f 6e 73 |ntial..E|quations|
|000026c0| 7d 20 28 4d 63 47 72 61 | 77 2d 48 69 6c 6c 2c 20 |} (McGra|w-Hill, |
|000026d0| 4e 65 77 20 59 6f 72 6b | 29 0d 0a 5c 72 65 66 20 |New York|)..\ref |
|000026e0| 43 6f 75 72 61 6e 74 2c | 20 52 2e 2c 20 48 69 6c |Courant,| R., Hil|
|000026f0| 62 65 72 74 2c 20 44 2e | 20 28 31 39 36 32 29 3a |bert, D.| (1962):|
|00002700| 20 7b 5c 69 74 20 4d 65 | 74 68 6f 64 73 20 6f 66 | {\it Me|thods of|
|00002710| 20 4d 61 74 68 65 6d 61 | 74 69 63 61 6c 0d 0a 50 | Mathema|tical..P|
|00002720| 68 79 73 69 63 73 2c 20 | 56 6f 6c 20 49 49 7d 20 |hysics, |Vol II} |
|00002730| 28 49 6e 74 65 72 73 69 | 65 6e 63 65 2c 20 4e 65 |(Intersi|ence, Ne|
|00002740| 77 20 59 6f 72 6b 29 0d | 0a 5c 72 65 66 20 47 65 |w York).|.\ref Ge|
|00002750| 61 72 2c 20 43 2e 57 2e | 20 28 31 39 37 31 29 3a |ar, C.W.| (1971):|
|00002760| 20 7b 5c 69 74 20 4e 75 | 6d 65 72 69 63 61 6c 20 | {\it Nu|merical |
|00002770| 49 6e 69 74 69 61 6c 20 | 56 61 6c 75 65 20 50 72 |Initial |Value Pr|
|00002780| 6f 62 6c 65 6d 73 20 69 | 6e 0d 0a 4f 72 64 69 6e |oblems i|n..Ordin|
|00002790| 61 72 79 20 44 69 66 66 | 65 72 65 6e 74 69 61 6c |ary Diff|erential|
|000027a0| 20 45 71 75 61 74 69 6f | 6e 73 7d 20 28 50 72 65 | Equatio|ns} (Pre|
|000027b0| 6e 5c 2d 74 69 63 65 2d | 48 61 6c 6c 2c 20 45 6e |n\-tice-|Hall, En|
|000027c0| 67 6c 65 77 6f 6f 64 20 | 43 6c 69 66 66 73 2c 20 |glewood |Cliffs, |
|000027d0| 4e 2e 4a 2e 29 0d 0a 5c | 72 65 66 20 48 61 6d 6d |N.J.)..\|ref Hamm|
|000027e0| 69 6e 67 2c 20 52 2e 57 | 2e 20 28 31 39 37 33 29 |ing, R.W|. (1973)|
|000027f0| 3a 20 7b 5c 69 74 20 4e | 75 6d 65 72 69 63 61 6c |: {\it N|umerical|
|00002800| 20 4d 65 74 68 6f 64 73 | 20 66 6f 72 20 53 63 69 | Methods| for Sci|
|00002810| 65 6e 74 69 73 74 73 20 | 61 6e 64 0d 0a 45 6e 67 |entists |and..Eng|
|00002820| 69 6e 65 65 72 73 7d 2c | 20 32 6e 64 20 65 64 2e |ineers},| 2nd ed.|
|00002830| 20 28 4d 63 47 72 61 77 | 2d 48 69 6c 6c 2c 20 4e | (McGraw|-Hill, N|
|00002840| 65 77 20 59 6f 72 6b 29 | 0d 0a 5c 72 65 66 20 48 |ew York)|..\ref H|
|00002850| 6f 6c 73 74 2c 20 54 2e | 4c 2e 2c 20 54 68 6f 6d |olst, T.|L., Thom|
|00002860| 61 73 2c 20 53 2e 44 2e | 2c 20 4b 61 79 6e 61 6b |as, S.D.|, Kaynak|
|00002870| 2c 20 55 2e 2c 20 47 72 | 75 6e 64 79 2c 20 4b 2e |, U., Gr|undy, K.|
|00002880| 4c 2e 2c 20 46 6c 6f 72 | 65 73 2c 20 4a 2e 2c 0d |L., Flor|es, J.,.|
|00002890| 0a 43 68 61 64 65 72 6a | 69 61 6e 2c 20 4e 2e 4d |.Chaderj|ian, N.M|
|000028a0| 2e 20 28 31 39 38 36 29 | 3a 20 60 60 43 6f 6d 70 |. (1986)|: ``Comp|
|000028b0| 75 74 61 74 69 6f 6e 61 | 6c 20 41 73 70 65 63 74 |utationa|l Aspect|
|000028c0| 73 20 6f 66 20 5a 6f 6e | 61 6c 20 41 6c 67 6f 72 |s of Zon|al Algor|
|000028d0| 69 74 68 6d 73 20 66 6f | 72 0d 0a 53 6f 6c 76 69 |ithms fo|r..Solvi|
|000028e0| 6e 67 20 74 68 65 20 43 | 6f 6d 70 72 65 73 73 69 |ng the C|ompressi|
|000028f0| 62 6c 65 20 4e 61 76 69 | 65 72 2d 53 74 6f 6b 65 |ble Navi|er-Stoke|
|00002900| 73 20 45 71 75 61 74 69 | 6f 6e 20 69 6e 20 54 68 |s Equati|on in Th|
|00002910| 72 65 65 20 44 69 6d 65 | 6e 73 69 6f 6e 73 22 2c |ree Dime|nsions",|
|00002920| 20 69 6e 20 50 72 6f 63 | 2e 0d 0a 49 6e 74 2e 20 | in Proc|...Int. |
|00002930| 53 79 6d 70 2e 20 43 6f | 6d 70 2e 20 46 6c 75 69 |Symp. Co|mp. Flui|
|00002940| 64 20 44 79 6e 61 6d 69 | 63 73 2c 20 65 64 2e 20 |d Dynami|cs, ed. |
|00002950| 62 79 20 4b 2e 20 4f 73 | 68 69 6d 61 20 28 4a 61 |by K. Os|hima (Ja|
|00002960| 70 61 6e 20 43 6f 6d 70 | 75 74 61 74 69 6f 6e 61 |pan Comp|utationa|
|00002970| 6c 0d 0a 46 6c 75 69 64 | 20 44 79 6e 61 6d 69 63 |l..Fluid| Dynamic|
|00002980| 73 20 53 6f 63 69 65 74 | 79 2c 20 54 6f 6b 79 6f |s Societ|y, Tokyo|
|00002990| 29 20 56 6f 6c 2e 20 31 | 2c 20 70 70 2e 7e 31 31 |) Vol. 1|, pp.~11|
|000029a0| 33 2d 2d 31 32 32 0d 0a | 5c 72 65 66 20 64 65 20 |3--122..|\ref de |
|000029b0| 56 61 75 63 6f 75 6c 65 | 75 72 73 2c 20 47 2e 2c |Vaucoule|urs, G.,|
|000029c0| 20 64 65 20 56 61 75 63 | 6f 75 6c 65 75 72 73 2c | de Vauc|ouleurs,|
|000029d0| 20 41 2e 2c 20 43 6f 72 | 77 69 6e 2c 20 48 2e 47 | A., Cor|win, H.G|
|000029e0| 2e 2c 20 4a 72 2e 20 28 | 31 39 37 36 29 3a 0d 0a |., Jr. (|1976):..|
|000029f0| 7b 5c 69 74 20 53 65 63 | 6f 6e 64 20 52 65 66 65 |{\it Sec|ond Refe|
|00002a00| 72 65 6e 63 65 20 43 61 | 74 61 6c 6f 67 75 65 20 |rence Ca|talogue |
|00002a10| 6f 66 20 42 72 69 67 68 | 74 20 47 61 6c 61 78 69 |of Brigh|t Galaxi|
|00002a20| 65 73 7d 2c 20 28 55 6e | 69 76 2e 20 6f 66 20 54 |es}, (Un|iv. of T|
|00002a30| 65 78 61 73 0d 0a 50 72 | 65 73 73 2c 20 41 75 73 |exas..Pr|ess, Aus|
|00002a40| 74 69 6e 29 0d 0a 5c 65 | 6e 64 72 65 66 0d 0a 5c |tin)..\e|ndref..\|
|00002a50| 6e 75 6c 6c 5c 76 73 6b | 69 70 30 70 74 20 70 6c |null\vsk|ip0pt pl|
|00002a60| 75 73 32 30 66 69 6c 6c | 0d 0a 5c 6e 6f 69 6e 64 |us20fill|..\noind|
|00002a70| 65 6e 74 20 5b 7b 5c 69 | 74 20 50 6c 65 61 73 65 |ent [{\i|t Please|
|00002a80| 20 6e 6f 74 65 20 74 68 | 61 74 20 74 68 65 20 61 | note th|at the a|
|00002a90| 75 74 68 6f 72 2d 2d 64 | 61 74 65 20 72 65 66 65 |uthor--d|ate refe|
|00002aa0| 72 65 6e 63 65 20 73 79 | 73 74 65 6d 20 68 61 73 |rence sy|stem has|
|00002ab0| 0d 0a 62 65 65 6e 0d 0a | 75 73 65 64 20 74 68 72 |..been..|used thr|
|00002ac0| 6f 75 67 68 6f 75 74 20 | 74 68 69 73 20 65 78 61 |oughout |this exa|
|00002ad0| 6d 70 6c 65 3b 20 79 6f | 75 20 63 6f 75 6c 64 20 |mple; yo|u could |
|00002ae0| 6f 66 20 63 6f 75 72 73 | 65 0d 0a 75 73 65 20 74 |of cours|e..use t|
|00002af0| 68 65 20 6e 75 6d 62 65 | 72 2d 6f 6e 6c 79 20 73 |he numbe|r-only s|
|00002b00| 79 73 74 65 6d 20 69 6e | 73 74 65 61 64 2e 7d 5d |ystem in|stead.}]|
|00002b10| 0d 0a 25 5c 76 65 72 62 | 7c 5c 72 65 66 65 72 65 |..%\verb||\refere|
|00002b20| 6e 63 65 7c 29 5d 0d 0a | 5c 62 79 65 62 79 65 0d |nce|)]..|\byebye.|
|00002b30| 0a | |. | |
+--------+-------------------------+-------------------------+--------+--------+